Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Drug Target ; 31(9): 950-961, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842966

RESUMO

As bioactive molecules, peptides and proteins are essential in living organisms, including animals and humans. Defects in their function lead to various diseases in humans. Therefore, the use of proteins in treating multiple diseases, such as cancers and hepatitis, is increasing. There are different routes to administer proteins, which have limitations due to their large and hydrophilic structure. Another limitation is the presence of biological and lipophilic membranes that do not allow proteins to pass quickly. There are different strategies to increase the absorption of proteins from these biological membranes. One of these strategies is to use compounds as absorption enhancers. Absorption enhancers are compounds such as surfactants, phospholipids and cyclodextrins that increase protein passage through the biological membrane and their absorption by different mechanisms. This review focuses on using other absorption enhancers and their mechanism in protein administration routes.


Assuntos
Peptídeos , Proteínas , Animais , Humanos , Fosfolipídeos , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos
2.
Int J Biol Macromol ; 241: 124538, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085064

RESUMO

Incorporation of an emulsion onto a gel base develops a drug delivery system with improved characteristics, known as emulgel, that can envelop both hydrophilic and lipophilic molecules, and therefore increase stability and penetration of topical formulations. Such a drug delivery system provides controlled drug release that has more patient compliance and higher therapeutic efficacy. Emulgel is prepared in three main stages, preparation of water-in-oil or oil-in-water emulsion, providing the gel base, and incorporation of prepared emulsion onto gel base with continuous stirring. Various materials such as different oils (e.g. sesame oil, balsam oil, and mineral oil), emulsifiers (e.g. Tween® and Span® as the non-ionic surfactant, polyvinyl alcohol), and gelling agents including cellulose derivatives such as hydroxypropyl methylcellulose (HPMC), hydroxyethylcellulose (HEC) and carboxymethyl cellulose (CMC) in different concentrations are used in emulgel preparation. The physical properties, particle size distribution, spreadability, permeation, and drug release rate are evaluated in their development and characterization. They are used in skin disorders and other diseases such as chronic anal fisher. Also, anti-acne, analgesic, and anti-inflammatory drugs have been formulated as emulgel delivery system and their effects have been studied. In this article, the subject is to review the characteristics, preparation methods, and therapeutic efficacy as well as the potential clinical use of emulgels.


Assuntos
Química Farmacêutica , Sistemas de Liberação de Medicamentos , Humanos , Emulsões , Química Farmacêutica/métodos , Excipientes , Celulose , Água , Géis
3.
Adv Pharm Bull ; 12(3): 541-549, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35935040

RESUMO

Purpose: Free radicals such as hydroxyl and peroxide are contributing factors to neuronal destruction in cerebral ischemia. Alpha-lipoic acid (ALA) is one of the potent known antioxidants. Preparation of ALA niosomes allows IV injection and can increase bioavailability and penetration into the central nervous system (CNS). Methods: Film hydration method was used to prepare different niosomes composed of Span®, Tween®, and cholesterol at different molar ratio. ALA and niosome-forming compounds were dissolved in chloroform, before removing the organic solvent by rotary evaporator. Animals were randomly divided into four groups: Sham, control group, intravenous (IV) injection of empty niosomes plus intraperitoneal (IP) injection of ALA solution, and finally, IV injection of ALA niosomes. Rats were subjected to deep anesthesia before inducing cerebral ischemia, then, their internal common carotid arteries were clamped for 15 min and reperfusion was done for 30 min. Niosomal ALA was injected intravenously just before declamping. Results: Mean volume diameter of the prepared niosomes was between 4.36 ± 0.82 and 19.95 ± 1.21 µm in different formulations. Encapsulation efficiency percent (EE%) of ALA in the selected formulation, Span60/Tween60/cholesterol (35:35:30 molar ratio), was 94.5 ± 0.2, and 59.27 ± 5.61% of ALA was released after 4h. In the niosomal group, the rate of reduction in complications of cerebral ischemia such as histopathologic changes and acute damage (from score 3 to 1) in CNS was higher than other groups. Conclusion: The obtained results show that niosomes can be used as effective drug delivery systems for ALA in cerebral ischemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...